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Fig. 1.10.

Our next theorem of the alternative, which is equivalent to the theorem
of the separating hyperplane, is the

MINKOWSKI-FARKAS THEOREM. If (II) above does not possess a solution,
then a necessary and sufficient condition for the m-component vector b to lie
within the finite cone spanned by the columns of the (m x n) matrix A is that
b y<0 for all y satisfying A'y<0, i.e. there exists an n-component vector
A>0 such that AA = b if and only if b’y <O for all y satisfying A'y<0.
Proof (sufficiency). If 44 = b, A>0, then A'4" = b’ and 4’A'y = b'y<0
for all y for which 4’y<0. (Necessity.) Let # = {p|b'y = 0, ye€™} be a
hyperplane through the origin and orthogonal to the half-line ¥ = { yly
— b, 220, yeé™}. Then £* = {y|b'y<0, yeé™}. Since ¢ = {x|x = A4,
A>0, xe6™), €* = {y|A'y<0, ye&™}. For each ye®*, let it also be true
that ye #*. So with §*cL*, L ¥ or be?¥ (fig. 1.10d). (Note that this
part of the proof has employed duality properties (b)and (¢)above.) Q.E.D.

1.10. Quadratic forms

DEFINITION 1.54. Let Q be a real-valued function of the n variables xy, ..., X,
Then Q is called a quadratic form in xy, ..., X, if
noon
O s 5) = iZ& jzl B35

where at least one of the constant coefficients a;; # 0.
To determine the general properties of Q let us express the above finite
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double sum explicitly as

n
lell—Za“xerZazszxwL +Za,,j,,1

HM;

= a11x1+a12x1x2+ s A XX,
Fay1X5X F055,X54 .o+ a5, XX, F ...
2
+an1xnx1 +an2xnx2+ & pile +annxn' (114)

Written in this fashion it is readily seen that Q is a homogeneous!! poly-
nomial of the second degree (since each term involves either the square of
a variable or the product of two different variables) containing n? distinct
terms. In addition Q is continuous for all values of the variables x;, i = 1,
., 1, and equals zero when all of the x;, = 0,i = 1, ..., n.
Let us now consider an alternative mode of representing a quadratic form.
Expressed in matrix form, Q equals, for all vectors xe&”, the scalar quantity

Q(xy, ... X,) = Q(x) = x'Ax, (1.15)
where
]_xl 118y - - - Qqp
. ’ 4= %1% G|
X, Hyilhs -

To see this we first find

S £
a,.Xx
INCVES
=
Ay X1 +4a3, X+ ... +ay, X,
n
dyy Xy+a,, X+ ... +4a,, X,
Ax = = Z Aoy
........................... =
any x1+an2 x2+ +ann Xn
n
Z il
J=d
' A form is homogeneous of degree t in the variables x,, ..., x, if, when each variable in the
form is multiplied by a scalar 2, the whole form is multiplied by A', ie. Q(ixy, ..., Ax,)

B 00, ... %)
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Then

X
XAX = (64,000, %) z o

Z ay; %y X;+ Z gXs ket v a b Z ;% %

j=1
n
Z U i J

From eq. (1. 14) it can be seen that a;; +aﬂ is the coefficient of x;x; since
a;;, aj; are both coefficients of x;x; = x;x;, i =+ J.

||M= T

Example 1.18. Find the quadratic form Q(x;, x,, x3) associated with the
matrix

1:21 X4 x1+2x2+ X3
XAx = x |35 2 x| = (% %5 %3) | 3% +5%; +2X5
1.1 2 lxy X+ X,4+2x5

xq (%) +2%5 +X3)+ X5 (3x1 + 5%, +2x3)+ X3 (Xg + %5 +2X3)
%2 4i5% X5+ 20y %05 + 565+ B, xaF 252

Example 1.19. Find x’ Ax when

A =

— (D ek
—_0 O
o O =

Since three elements in A4 are zero, Q will have n? —3 = 6 individual terms.



Tell SYMMETRIC QUADRATIC FORMS 41

Upon performing the indicated matrix multiplication we obtain

X' Ax = x240x; %, +x, %5 +3x,%; +0x2+ 0%, %, + x5,
+ x5, +2x32
= %7k B0y, + 23 X5+ x5 05 +2x2,

1.11. Symmetric quadratic forms

If the matrix 4 is symmetric so that 4 = A4’, then a;; = a;, i # j. Thus

we have

ji>

DEFINITION 1.55. A quadratic form x'Ax is symmetric if the matrix A is
symmetric, i.e. if a;; = a;;, i # J.

Hence a;;+a;; = 2a;;is the coeflicient of x;x;since a;; = a;;and a;;,a; are
both coefficients of x;x; = x;x;,i # j.

If 4 is not a symmetric matrix so that a;; # a ;i» We can transform it into
a symmetric matrix B by defining new coefficients:

bij = by =24T%i foralli,j , (1.16)
Then b;;+b;; = 2b;; is the coefficient of X;X;, 1% j,in

n n

; a..+a..

x' Bx = Z Z U_ngixj.
i=1 j=d

But, by definition, b;;+b;; = a;;+a;;. Hence the redefinition of coefficients
leaves the value of Q unchanged. That is, if eq. (1.16) holds, then x’Ax
= x'Bx for any xe&”. In sum, given any quadratic form x’ Ax, the matrix A4
may be assumed to be symmetric; if it is not, it can always be transformed
into a symmetric matrix.

Example 1.20. Given that

=
411 18
. 54

transforms A4 into a symmetric matrix B. From eq. (1.16) we set

by, =y = 1

by, =by = a12‘2"a21 i 3;1 —

a;z3+a 243
bis =by = 132 2= > B

2

9

N N
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b22=a22=—1,
s, e 600 IL
23 32 2 2 2
b33=a33=4.
Hence
1 2%
B = 2—112—1
;B 4

Example 1.21. Find the matrix A associated with the quadratic form
x'Ax = 2x§—3x1x2+%x1x3+x1x4+x§+6x2x3—8x3x4+2xi.

Since A may be assumed to be symmetric we have

O W = Nw

PN
Il
D= BaNw NI

B O WHRN
|
N B O

1.12. Classification of quadratic forms

In all there are five mutually exclusive and collectively exhaustive categories
of quadratic forms. First,

DEFINITION 1.56. A quadratic form is said to be positive definite (negative
definite) if it is positive (negative) at every point xe&" except x = 0, i.e.

(a) x' Ax is positive definite if x' Ax>0 for every x + 0;

(b) x' Ax is negative definite if x' Ax <0 for every x # 0.

It is evident that a form which is either positive or negative definite cannot
assume both positive and negative values. To see this let us assume that a
definiteformis positive at a point x (x; 4x, >0)and negative at x,(x,4x,<0).
Then, because of the continuity of the form, there must exist some point
x, # 0 between x,, x, such that x34x; = 0 (see theorem 6.3, p. 99).
However, this contradicts the definition of definiteness given above. Hence
definite forms must be either positive or negative. We now state

DEFINITION 1.57. A quadratic form is said to be positive semi-definite (negative
semi-definite) if it is non-negative ( non-positive) at every point xe€", and
there exist points x # 0 for which it equals zero, i.e.
(a) x'Ax is positive semi-definite if ¥’ Ax>=0 for every x and x’Ax = 0 for
some points x # 0;
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(b) x'Ax is negative semi-definite if x’ Ax <0 for every x and x'Ax = 0 for

some points x #+ 0.

It is obvious that if the quadratic form x'Ax is positive definite (semi-
definite), then x'(—A)x is negative definite (semi-definite) and conversely.
In addition, we have

DEFINITION 1.58. 4 quadratic form x' Ax is said to be indefinite if it is positive
for some points xe&" and negative for others.

Example 1.22. From def. 1.56 it is clear that the quadratic form x’'Ax
= X7+ X3 is positive definite while x'(— A)x = —x?—x2 is negative definite
since both vanish only at the point x = 0.

Example 1.23. 1t is evident, from def. 1.57, that x'Ax = x2—2x,x, +x2
= (x,—x,)* is positive semi-definite and x'(—A4)x = —x?+2x,x, —x?
= —(x;—Xx,)* is negative semi-definite since the former is never negative
while the latter is never positive, yet both equal zero for x, = x, # 0.

Example 1.24. That the quadratic form x'4x = x,x, +x? is indefinite can
be verified from def. 1.58 by noting that, on the one hand, x’Ax <0 for
X; = —2, x, = 1 and, on the other, x’4x>0 for x;, = 2, x, = 1.

We shall often find it convenient to classify matrices in terms of the sign
‘definiteness’ or ‘semi-definiteness’ of their associated quadratic forms.
Specifically, we have

DEFINITION 1.59. An nth-order symmetric matrix A is positive definite ( negative
definite) if and only if x' Ax > 0(<0) for all x(#+0)e&™

DEFINITION 1.60. An nth-order symmetric matrix A is positive semi-definite
(negative semi-definite ) if and only if x' Ax = 0(<0) for all xe&".
Some of the essential features of definite matrices are
(a) if 4 is an nth-order positive (negative) definite matrix, then |4 | >0(<0)
and thus p(4) = n;
(b) if A4 is an nth-order positive (negative) definite matrix, then so is 4~ L.

1.13. Necessary conditions for the definiteness and semi-definiteness of
quadratic forms

In this section and the next our aim will be to provide a set of theorems with
which to identify the various types of quadratic forms. We state first
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TuEOREM 1.3.12 [fa quadratic form x' Ax, xe&", is positive ( negative) definite,
all the terms involving second powers of the variables must have positive
(negative) coefficients.

Note that the theorem does not provide a sufficient condition for the
definiteness of a quadratic form because its converse does not hold, i.e. a
quadratic form may have positive (negative) coefficients on all its terms
involving second powers yet not be definite. A case in point is provided by
example 1.23 above. Similarly,

Tueorem 1.4. If a quadratic form x'Ax, xeé”, is positive (negative) semi-
definite, all of the terms involving second powers of the variables must have
non-negative (non-positive) coefficients.

In this case, too, the converse of the theorem does not hold, since the quad-
ratic form x? — x, X, has non-negative coefficients associated with its second-
degree terms, yet happens to be indefinite.

In the next section we shall find it useful to express conditions which are
simultaneously necessary and sufficient for the definiteness or semi-
definiteness of a quadratic form in terms of determinants. As a prelude to
this type of reasoning we cite

THEOREM 1.5.13 If the quadratic form x'Ax, xeé", is definite, the naturally
ordered principal minors of A are all different from zero. In this case

a“...a_lkl
M. = - vkl = A n
akl ..-akk
or
aq.id
M, =a;,; #0, M=) = 2 =L,
dp1 Az
dyy dip dg3
M3 e a21 6122 a23 # 0, ey Mn = ‘A‘ # 0
dyy Qzp dzs
So if any M, = 0. k = 1, ..., i, the form is not definite; it may be semi-

definite or indefinite. That this theorem does not provide a sufficient con-
dition for definiteness is illustrated by the quadratic form x'Ax = x7—x3.

12 This theorem represents a special case of a more general theorem provided by Bushaw and
Clower (1957), p. 264.
13 Bushaw and Clower (1957), pp. 279-280.
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b4

Although M; =1 # 0, M, = —1 # 0, x'Ax is not definite but indefinite
since it is positive for some values of x and negative for others.

Here

Example 1.25. Use theorem 1.5 to verify that the quadratic forms
wdx = x2=Dx s+ %3, XdAx = xx+x2

are non-definite. First, for x’Ax = x} —2x,x,+ x2,

Now M| = 1 # Owhile M, = 0. Hence the form is not definite. It is, in fact,
semi-definite, as indicated in example 1.23. Next, for x'Ax = X%, Fx2,

Azﬁ
2

Here M, = 0 and we need not proceed further. In this case x’Ax happens
to be indefinite, as seen in example 1.24.

i

1.14. Necessary and sufficient conditions for the definiteness and
semi-definiteness of quadratic forms

Let us modify theorem 1.5 to get

- THEOREM 1.6.'* The quadratic form x' Ax, xe&", is positive definite if and only
if the naturally ordered principal minors of A are all positive, i.e.

Mk: ‘ : >O, k=1,...,7’l,

or

dyg dyo
dp1 Az

Ml =a11>0, M2: >O5

dyp Qg 43
M3 = (121 azz 6123 >O, ey Iwn = tA‘>O.

Qz; d3p di;

** A proof of this theorem is provided by Hadley (1964), pp. 260-261.
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We noted above that if the quadratic form x’ Ax is negative definite, then
x'(—A)x is positive definite. But if x'(—A)x is positive definite, it follows
from the preceding theorem that the naturally ordered principal minors of

—dyqy —dyp ... —dyy
—A = _agl '—alzz & . _a_2"
—0p1 —Qpg - —dyy
are all positive or
Ml — —‘a11>0,
—01y —dig > 811 Gip
M, = | i =(—1) >0,
asq (¢5%) dyq dpp
—ay; —ayp; —d4i3| ayp dyp dy3
-k & 3
M; = |—ay; —a; —ds; = (=1 |ay; a5 ay3|>0,
—dad31 —azp; —U33 a3y d3p dij
M, = |—A| = (—l)”~A|>O.

For all these principal minors M, k = 1, ..., n, to be positive, it must be
true that

dyp g2 13
>0, a21 azz a23 <0, ceny (—1)'1|A|>O

A3y d3p dizj

a a
6111<0, 11 12

sy Qo3

But this last sequence of determinants represents the naturally ordered
principal minors of 4. Hence

THEOREM 1.7. The quadratic form x' Ax, xe&", is negative definite if and only
if the naturally ordered principal minors of A alternate in sign, the first being
negative, i.e.

all.--alk‘
(LM, = (1) =0 k=Y ..n

akl...akk

or

a a
M1 == 6111<0, Mz b= o 1 >0,

dpy doa

dyy Ay di3
M3 == (121 a22 a23 <O, ey Mn — (__1)”}A\>0

a3y dzz 433
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A similar set of theorems holds for semi-definite forms. In this regard,

THEOREM 1.8. The quadratic form x' Ax, xe&”, is positive semi-definite if and
only if the naturally ordered principal minors of A are all non-negative.

Now if x'(— A)x is positive semi-definite, then x’4x is negative semi-definite
and thus we have

THEOREM 1.9. The quadratic form x' Ax, xe&", is negative semi-definite if and
only if the naturally ordered principal minors of A alternate in sign, the first
being non-positive.

Example 1.26.1s the quadratic form x'Ax = 2x7+2x, X, +6x%+4x,x;+ X3
positive definite? To answer this question we first find

210
A=|162|.
021

Employing theorem 1.6 we have M, = 2, M, = 11, and M; = 3. Hence
x'Ax is positive definite since all the naturally ordered principal minors of
A are positive.

Example 1.27. Prove that x'Ax = —xi+x,x, —x3—x2 is negative definite.
Since
-1 3 0
A & 0 9
g 0 =1
it follows that M; = —1, M, = 3/4, and M; = —1/2. Thus the require-

ments of theorem 1.7 hold and x’Ax is negative definite.

1.15. Quadratic functions

We shall now demonstrate that a general second-degree polynomial in the
variables x,, ..., x, can be written as the sum of a constant, a linear form,
and a quadratic form. Specifically, let the real-valued function y = f(x),
xedé”, appear as

f(x) = a+b,x,+ ... +b,x,+a; ;% %, + ... +a;,%,x,

+a3%, X3+ ... +a3, XX,
FazaX3 X+ ... Fa3,X3X,
T +an—l,nxn—-lxn

+axi+... +a,x’
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g =a; and q;=q; =34 1#) Li=1..n
then the above expression may be rewritten as

fd) = a+ ) b+ Y. Y qu%x;
=1 =1

i=1 j=1

= a+b'x+x'0x,

where b is of order (nx 1) and Q is an nth-order symmetric matrix.
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Xg Xy

Fig. 6.22.

fig. 6.22b may be conceived as representing its contour map. And if a
function hypothetically assumes a saddle value at the point x', = (5, 4)ex’,
with

f(x,) = 7 = gmax {(5, x,) = gmin f(x,, 4),

X2 X1

the implied contour map may look something like the one in fig. 6.22c.

6.11. Appendix A : The Newton—Raphson, secant, and false position methods

Throughout chapter 6 we examined a variety of rather simple and straight-
forward examples involving the application of various theorems designed
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to identify and isolate local extrema. For the most part, we may refer to
these contrived examples as ‘classroom exercises’ whose singular purpose
is pedagogic exposition, rather than the development of computational
prowess. However, the vast majority of functions that one usually encounters
do not lend themselves to any such clear-cut analysis. That is, we are usually
not fortunate enough in most applications to compute f’, equate it to zero,
and then find that we are faced with simply solving a linear or quadratic
equation for the critical value(s) of x which give rise to local extrema. Indeed,
one may have to solve a polynomial of rather high order or even an equation
of a more complex nature. How are we to handle such contingencies?
In this section we shall explore three common methods of finding the
roots of non-linear equations: the Newton—Raphson method; the secant
method ; and the method of false position.

Basically, each of the said techniques for computing the root(s)'! of a
non-linear equation involves a process of successive approximations, i.e.
each is an iterative procedure. As with any iterative technique, we begin
the various rounds of iteration by choosing an initial point (near the desired
solution) from which a new point is computed by an appropriate algorithm
or computational rule. The process is continued (until the desired degree
of accuracy is attained) by successively calculating additional points that
yield improved approximations to the solution.

To see exactly how the Newton—Raphson method works, let us assume
that we have taken the first derivative of the real-valued function y = f(x)
and we desire to find a value of x, x*, for which it vanishes. That is, we
desire to find a root x* of f'(x) = 0. Without loss of generality, let us further
assume that f attains a strong local minimum at x = x* (fig. A.1). If we
choose an initial estimate of x*, x, to the right (or left) of x* (with |x* — x|
small) and approximate f’ at the point (x,, f'(x,) ) by the linear portion of
Taylor’s expansion of a function (eq. (5.12) ), we obtain

F(x) = [/(x0)+"(x0) (x =X} (A1)

Here, eq. (A.1) represents the equation of the line tangent to " at (x,, f'(x,) ).
It crosses the x-axis at the point (x,, 0). A substitution of the coordinates
of this point into eq. (A.1) yields

0 = f"(x¢)+1"(x0) (x1 —x0)
or

Xy = xo—f'(x0)/f"(x0),

11 By a root of the real-valued function y = f(x) = 0 is meant a real number r such that,
when r is substituted into f for the unknown, the equation is satisfied. That is, f(x) = 0 reduces
to the identity 0 = 0 for x = r.
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Y
-f' () Fig. A.1.

where x, represents our second approximation to x*. (Note that x, is
closer to x* than is x,.) This completes the first round or iteration of the
Newton-Raphson technique. To start the second iteration we again
approximate f' by Taylor’s expansion, but this time at the point (x, {'(x,)).
Then

f'(x) = £'(x)+ ") (x—x,) (A.2)

In this instance the tangent to f’ at (x, f'(x,))(A.2) intersects the x-axis
at a point even closer to x* than before, namely x,. Our third approximation
to x* x,, is obtained by substituting the coordinates of this new point
(x,, 0) into eq. (A.2). Hence

0 = f(x)+"(x)(xs—Xy),
xp = X, = 1(x,)/1(x,)

Our second iteration is now complete. This successive-approximation
technique may be repeated until the difference |x;—x;_,| is as small as
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one desires. In general, after i iterations,

_ -y . _

X; = xi_l—m, 1 = 1, 2, (A3)

A summary of the various steps involved in implementing the Newton—
Raphson method proceeds as follows:

(1) draw a graph of f'(x) = 0;
(2) choose an initial estimate x, near the point x* where the curve crosses
the x-axis;
(3) from x, move vertically to f'(x,);
(4) construct the tangent to f’ at (x,, f'(x,));
(5) find the point where the tangent to {’ at (x, f'(x,) ) crosses the x-axis.
This yields

x; = xo—1"(x0)/1"(x0);

(6) repeat the process, involving steps (1)—(5) i times in succession to
obtain

X

X; = X — 102 )/F7 (%2 ).

We note briefly that, with the Newton—Raphson (or any) successive-
approximation technique, a proof of convergence to the desired solution
and an estimate of the error incurred upon completing the ith iteration
are needed. In addition, one must demonstrate the existence and uniqueness
of the solution (see Saaty and Bram, 1964, pp. 58-62).

Example A.1. Determine the extreme values of the real-valued function
y = f(x) = x*—3%x3—x?—5x+2

over the x-axis. Setting f'(x) = 0 we obtain
x*=2x*=2x—-5 = 0.

A graph of {’ (fig. A.2) indicates that this function possesses a critical root
x* somewhere between x = 3 and x = 4. To find it let us approximate
x* by the Newton-Raphson method for i = 1, 2, 3. From eq. (A.3) we have,
for %4 = 3.5,

- f'(xo) _ 3.5000—f(3'5000)

X = O—f”(xo) m = 31900,

Xy = xl—g,,((’;ll)) = 3.1900—?,,((33'.11% = 3.1440,
Py £(3.1440)

X3 = 2_f”(x2) — 31440_ f//(31440) = 31427

Since {'(3.1427)>0, f has a strong local minimum at x*~ 3.1427.
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' (x)
A

20

I

I

10

Y
-f (x)
Fig. A.2.

The Newton-Raphson method may be modified for computational
convenience by replacing f'(x;_,) in eq. (A.3) by f"(x,) (Saaty and Bram,
1964, p. 62). This substitution enables us to avoid computing f"(x;_;) at
each round of the process. Hence, the iterations are now described by

fix_1) .
s = . — _‘_1_3 =
Xy = Xij-1 T (xo) 152smn ¢ (A.3.1)

Example A.2. Using ' = 0 from example A.1 above, demonstrate that,
for x, = 3.5, the successive terms of the modified Newton-Raphson process
described by eq. (A.3.1) approach 3.1427 for i = 1, ..., 6. In this case

— xo— P _ 319000,  x, = xy— OBk — 314360,

xl = O—frl(xo) 3= f”(xo)
Xy = X4 —tf.((’; 1)) = 315000, x5 = x4—l;,,(();4)) = 3.14290,
0. 0
Do) o 908600, = xS—M = 3.14274.

TR F'(xo)

Note that while eq. (A.3.1) is easier to handle from a computational view-
point than eq. (A.3), the rapidity of convergence is substantially greater for
eq. (A.3) than for eq. (A.3.1).
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At times it may be desirable to further modify the Newton—Raphson
process (eq. (A.3) ) so as to accelerate convergence to x*. One such modifi-
cation, leading to what is called the generalized Newton—-Raphson method,
is developed as follows. If eq. (A.1) is replaced by

f'(x) = f'(xg)+of"(xq) (x+x0), T 1. (A.1.1)

(Here eq. (A.1.1) represents the equation of a line through (x,, f'(x,) ) which
intersects the x-axis at a point closer to x* than the previously specified
x, value in fig. A.1.), then it is easily shown that

_ 1 f'(x,)
Xy = Xo—T T(x,)’ T # 1

In general, the ith iteration is determined from

£1(%_4)
f!/(xl—l) s

where 4 = 1/7. As an exercise the reader should rework example A.1 using
eq. (A.3.2) with = = 0.90.

It is important to note that the sequences described by egs. (A.3), (A.3.1),
and (A.3.2) may not converge if x, is not chosen sufficiently close to x*.
Moreover, if they do, in fact, converge to some number xe%,., this number
may not be the correct root.

The Newton—Raphson technique requires first- as well as second-order
information about a function, i.e. it utilizes both first and second derivatives
in its implementation. A modification of the Newton-Raphson method
which uses only first-order information is the secant method, so named
because f” in eq. (A.3) is replaced by its finite difference approximation

X; = Xi—g— A4 o= 1325 us (A.3.2)

£y ) D)= Py (A4)

Xi—1— X2

where the difference quotient on the right-hand side of eq. (A.4) is simply
the slope of the secant line between the two points

(i1, F'(x;- 1)), (-2, F'(xi-5) )

on f’ (fig. A.3) and x;_,, x;_, are any ‘two’ initial approximations to the
root x*. Upon substituting eq. (A.4) into (A.3) we obtain

Xi—1 7= Xi—2
(xi—1)_f’(xi-—2)
Xy a 0 )= )
= —t + i=2: i=23, ... A5
e ) —F'(x, 5) : i)

What is the geometric interpretation of eq. (A.5)? Given the two initial

Xp=X;_1—f'(x;- 1)f,
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Y
-f' (x) Fig. A.3.

approximations x,_, X;_, to x*, the next approximation x; corresponds

to the intersection of the chord joining points (x;_ 1, f'(x;_ 1) ), (x; -5, f'(x;_5) )

with the x-axis. Once x; is obtained, x,, , is determined in a similar fashion,

i.e. by finding the intersection of the chord joining points

(% P))  Ennt Geg))

with the x-axis. The process is repeated until the desired degree of accuracy,
in terms of | x;—x;_ |, is achieved.

A variation of the secant method is the method of false position. Let us
choose the two initial approximations x;_,, x;_, to x* in a fashion such
that f'(x;_,), f'(x;_ ) are of opposite sign, i.e. f'(x;_,)f'(x;_;)<0. Then x*
must lie between x;_,, x;,_, so that if we connect points (x;_,, f'(x;_,))
(x5, I'(x;_,) ) (fig. A4) by a secant line, x; in eq. (A.5) represents the inter-
section of this line with the x-axis. To obtain x,, ,, let us, in general, proceed
in the following fashion:
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£ (x)
A

4

_f! (X) Fig. A.4.

(a) If f'(x; _ ), f'(x;) are opposite in sign (f'(x;_,)f'(x;)<0), replace x;_,

by x; (x;_, is unchanged) and obtain the next approximation from eq.

(A.5). (Geometrically, x;, , is just the intersection of the chord joining

(x;_ 5, f'(x;_5) ), (x;, f"(x;) ) and the x-axis.)

(b) Otherwise, replace x, _, by x;(x;_, is invariant) and again use eq. (A.5)

to determine a new approximation. (In terms of fig. A.4, if (x,, {'(x,)),

(x;_, f'(x;_,)) are connected by a secant line, the new estimate, x|,

is again taken to be the intersection of this line with the x-axis.) As

always, the process is repeated until the desired degree of accuracy
obtains.

When should these various iterative schemes be employed? If " is easily
computed, the standard Newton—Raphson technique is preferred, the reason
being that it converges faster to x* than the other two methods. (In this
case, the Newton-Raphson technique is said to possess second-order
convergence or to converge quadratically, i.e. the error incurred at any
iteration is proportional to the square of the error of the previous iteration
so that, asymptotically, the number of places of accuracy doubles with each
succeeding iteration beyond the first few.) Next, if the information provided
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by " is difficult to obtain, the secant method should be used. Finally, the
method of false position can be utilized if the previous two methods fail to
converge to the desired critical value of x. As an exercise the reader should
rework example A.1 using both the secant method and the method of false
position.

/6.12. Appendix B: The Newton-Raphson method, xe&™"

We noted above that a necessary condition for the real-valued function
y = f(x), xeé", to assume a local extremum at a point x, contained within
an open region J = &" is that Vf* = 0. If Vf = 0 gives rise to a non-linear
system of equations, then x, may be found by a series of successive approxi-
mations using the Newton-Raphson technique. As in Appendix A, our
strategy will be to obtain a series of successive approximations to x,, with
each iteration yielding an improved solution.

That is, if we choose the point x, as our initial estimate of x,, with | x, — x|
sufficiently small, and approximate Vf at x, by the linear portion of Taylor’s
expansion of a function (eq. (5.15) ), we obtain

0 n
Vi = Vo4 5;; h 1 op 4 2@ =100+ 3 2,0, —x}),

= V04 H(x,) (x—x,) j

...........................................

(B.1)

To undertake our first iteration let us set x = x, in system (B.1) and equate
Vf(x,) to the null vector. Then eq. (B.1) becomes

(0 =1+ j; fl,(x} —x?),
0=1f+ 2 f9 (x} —x9),
0 = Vf°+ H,(x,)(x; —x,) or = T
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or, upon transposing,
H(xo)x, = H(x,)x,— Vf°. (B.2)

Here H((x,) is the nth-order Hessian matrix of f evaluated at x,, and V{°
is the (nx 1) gradient vector of f at x,. If Hy(x,) is non-singular, we obtain,
from eq. (B.2)

x; = xo— Hp *(x,) (Vf°).

Round one of this iterative procedure is now complete.
In general, after i iterations,

x;=x;_—H'(x;_;) (Vi(x;_y)), i=12 .. (B.3)

provided H(x;_,) is non-singular. Additionally, this process converges to
. astrong local maximum (minimum) provided H(x;_,) is negative (positive)

definite and the change in the function is less than some predetermined
limit #, ie. [f(x;)—f(x;_,)| <n for several successive values of i.

Example B.1.Does the real-valued function
y=f(x) = —x$+2x,x,—3x3+3x,+x,—6
attain a local extremum over &2? Setting Vf = 0 we obtain the system

—4x3+2x,+3 =0,
2x,—-9x3+1 =0,

which must be solved simultaneously to find the critical point x €8> where
Vf* = 0. We first find

—12x2 2
H(x) = [ 5 1—18x2:|'

Then, from eq. (B.3) we have, fori = 1,2 and x; = (1, 1),
x; = xo—H; '(x,) (Vf(x,) )

1 —0.0849 —0.0094 1] _[1.0285
1] |—0.0094 —0.0566| | —6 | |0.6698|
x, = x—Hf 1(x1)(Vf(x1))

1.0285 —0.0809 —0.0131| |—0.0120 | | 1.0147
0.6698 ] ~ |—0.0131 —0.0831| |—0.9804 |~ | 0.5881|"

Hence, x, ~(1.0147, 0.5881). Since the naturally ordered principal minors
of the Hessian matrix alternate in sign (the first being negative) at x,, f
assumes a strong local maximum there, i.e.

M, = -1235<0, M, = |H(1.0147,0.5881)| = 130.27>0.
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6.13. Appendix C: The method of steepest ascent

The Newton—-Raphson iteration technique may be described as an ‘indirect
method’ of determining an extremum of a real-valued function, i.e. its
implementation involves the application of a set of supplemental (necessary)
conditions which must be satisfied at the maximum or minimum of the
function. An alternative technique involves what may be described as a
‘direct method’. This process makes use of an initial estimate from which
information about the behavior of the function is used to determine locally
a direction in which the function increases or decreases. The direct method
which we shall consider here may generally be characterized as a process
involving ‘gradient search’. Specifically, it is Cauchy’s method of steepest
ascent (descent). In what follows we shall attempt to maximize the real-
valued function y = f(x), xe#" = &", by the method of steepest ascent. That
is to say, we seek to approximate the coordinates of a point x e such that
f(x,)=f(x), xed(x,). The modification for handling minimization problems
is obvious and will not be presented in detail.

We noted previously that the gradient vector Vf points locally in the
direction of maximum increase of f. Hence we may: (1) start at some initial
point x,e and compute V{°; (2) take a step in the direction of steepest
ascent Vf°, using a step length 4,, to obtain a new point x, (here the search
parameter 1, is interpreted as some scalar multiple of V{°); and (3) repeat
the process until the desired degree of accuracy to our approximation of
x, is obtained. The iteration scheme may thus be described as

X, =x,_,+4_,Vi(x;_), i=12,.., (€.1)

with the process converging to a strong local maximum if the 4;_; are
chosen so that f(x;)>f(x,_ ,), i.e. the function is made to increase with each
step. Since f is increasing locally in the direction of Vf(x;_,), we can be sure
that there always exists a 4,_;>0 such that f(x;)>f(x;_ ). The process is
then stopped when the change in the function is less than some predetermined
limit n or |f(x;)—f(x;_,)|<#n for several successive values of i. Since our
direction of movement throughout ¢ is specified by the gradient of f at
x;_, it thus remains to determine 4;_ .

Utilizing eq. (5.15) we may write the quadratic approximation of f at
X;_,as

f(x) = f(xi-1)+Vf(xi-1),h+%h,Hf(xi~1)ha (C2)

where 2 = x—x,_,. In light of the iteration scheme described by eq. (C.1)
let us set

X=X = X+ A Vi)
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in eq. (C.2), thus obtaining, for

h=x—x,_, =4_,Vi(x,_,),

i—1 i

fx,) = f(x,_,)+4,_, Vi(x,_ ) Vi(x,_,)
72

5LV g ) Hi(xi— 1) V(i ). (C3)

9

How should 4;_, be chosen? Since we require a 4;_, for which f(x;)
—f(x,_,)>01is as large as possible, let us determine 4,_, according to the
criterion

flx;_+A;- (Vi(x;_)) = max f(x,_; +AVI(x;_;) ), (C4
2

ie. A;,_, is chosen by maximizing f along the Vf(x,_,) direction. Then
df(x,_, +AVi(x;_ )|
dA A=A,
= Vi(x;_ ) Vi(x;_ )+ 4,y VI(x;_ ) He(x;_y) Vi(x;_,) =0

or

_ Vf(xi«1)/Vf(xi—1) .
Vi, ) Helx; - ) VE(x;_ 1)

Additionally, f(x;_, +AV{(x;_,)) will attain a maximum if

d2f(x,_, +AVi(x,_,))
diz

hiy =

= Vi(x;_ ;)" He(x;_ ) Vi(x;_ ) <0,

i.e. if Hy(x;_,) is negative definite.
In general, the various iterations in the method of steepest ascent may be
described as

x;=x,_+2;_,Vi(x;_), i=12, .. (steepestascent) (C.5)
where

Vi(x;_ ;) Vi(x;_,)

Aioy = — ViGx, ) Hy (x;— ) VE(x;—y)

is chosen to maximize f along Vf(x;_,). Moreover, convergence to a strong
local maximum of f is assured if Hy(x;_,) is negative definite.

If we desire to minimize f over %", then we must employ the method of
steepest descent. The modification is straightforward. Since — Vf points
locally in the direction of maximum decrease of f, —Vf(x;_,) replaces
Vf(x;_,) in eq. (C.1). Hence the various rounds of the method of steepest
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descent may be characterized as

x; =x;_1—A_(Vi(x;_y), i=12, ..., (steepestdescent) (C.5.1)
where

_ Vf(xi_l),Vf(xi—l)
1T V() He(x; - ) VE(x; )

A
is chosen to minimize f along — Vf(x;_,).'? In this instance the process will

converge to a strong local minimum of f if H(x,_,) is positive definite.

Example C.1. Given y = f(x), x = (1, 1), from example B.1, p. 141, find
x5 using the method of steepest ascent (eq. (C.5) ). Since

1
b Vix)Vixy)  __ (1,-6) [—6}
9 Vi(xo) H(x,)Vi(x,) (1 —6) =17 2 1
? 2 —18| |-6
= 0.0551,
it follows that
1 1 1.0551
X, = xo+4oVi(xo) = [J +0.0551 [—61] = [0.6694:1'
With
o Vi(x,)'Vi(x)
! Vi(x,) H(x,)Vi(x,) ~
—-0.3592
B (—0.3592, 0.9227) [ 0.9227J
7 (—0.3592,09227) [—13.3584 2] [—0.3592
2 —12.0492 0.9227
= 0.0737,
1.0551 —0.3592 1.0286
g oy A Vlehes [0.6694}'0'0737 [ 0.9227} & [0.7374}'
Also, with
2y = - o Vi) Vi)

Vi(x,) "H(x,)Vf(x,)

12 For a discussion on the conditions underlying the existence of a solution to an extremum
problem via this method with a variety of proofs of convergence to the same, see Saaty and
Bram (1964), pp. 76-88.
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0.1216

B (0.1216, —1.8370) [_ 1.8370}
= —12.6960 2 0.1216
(0.1216, —1.8370) [ 2 _13‘2732} [_1_8370:I

— 0.0739, e
1.0286 1216] _ [1.0376
% = Mg = [0.7374} B [—1.8370} = ]:0.6016]

Notice that for this particular example the successive steps of the steepest
ascent method tend to be somewhat erratic, i.e. an inefficient zigzag pattern
unfolds because the contours of f are non-spherical. In such instances the
direction of the gradient is not coincident with the direction to the maximum
(minimum) with the result that convergence is slow.

What is the relationship between the Newton—Raphson and steepest
ascent methods? A glance at egs. (B.3) and (C.5) indicates that both these
equations are actually special cases of the more general expression

Xp =X, A Mx,_ )VE(x,_), i=1,2 .., (C.6)

where M(x;_,) is termed an nth-order deflection matrix which serves to
modify or deflect the gradient to a direction which leads to a greater total
increase in the function than would be attained simply by moving locally
in the direction of the gradient. In this regard, if M(x,_ ;) equals the identity
matrix I, for all values of i, then eq. (C.5) obtains, while if 4,_, = 1 for all i
and M(x,_,) = —H; *(x;,_,), eq. (B.3) results. Hence it can be seen that
the Newton-Raphson method is essentially a modified steepest ascent
technique.!3

'3 The preceding discussion has hinted at a procedure which may be used to generalize the
Newton-Raphson technique (eq. (B.3)). If in eq. (C.6) we let M(x,_,) = —H; '(x,_,), then,
starting at some initial point x,, we may take a step in the direction — H *(x,)Vf(x,), using
a step length 4, which is chosen to maximize f along — H; *(x,) Vi(x,), to obtain a new point

X, = xo—AgHf Y(x,)Vi(x,).
In general, the ith iteration is determined as

X X = Ay () V(R g)i. =152, 005
where 4;_, is chosen so that

£,y = Ao (H7 (- ) Ve(xi- ) = m?x £,y —AHT ' (x;_ ) Vi(x;— ).
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6.14. Appendix D: Conjugate direction methods
6.14.1. The Fletcher—Powell (variable-metric) method

An extremely efficient deflected-gradient technique is the method of Fletcher
and Powell (Fletcher and Powell, 1963, pp. 163-168). To gain some insight
into the motivation underlying their technique, let us re-examine the
Newton—Raphson and gradient schemes depicted by egs. (B.3) and (C.5)
respectively. Note that in these two processes the Hessian of f is computed
at each iteration, a task which may at times require a considerable amount
of effort. Moreover, once a particular iteration is executed, the information
provided by such a calculation is discarded, i.e. none of the information
previously obtained regarding the behavior of f near an extremum is stored
and then used to implement further iterations which may hasten convergence
to the desired critical value of x. To improve upon these shortcomings
Fletcher and Powell have developed a modified or accelerated steepest
ascent method which relies solely upon first-order information, as generated
by the gradients of f at several different points, to construct a second-order
approximation to fin the neighborhood of the extreme point, i.e. a quadratic
approximation to fat the said point is obtained without explicitly calculating
the Hessian of f there.!* Fletcher and Powell develop their technique fo:
the case where the function to be maximized is quadratic in x, the reason
being that if an iterative process can be found which possesses quadratic
convergence, i.e. it quickly and efficiently maximizes a quadratic function
in a finite number of steps, then that same technique should work well on
a general function which behaves like (can be closely approximated by) a
quadratic in the vicinity of the extremum.

Let us assume then that the real-valued function y = f(x), xeé™",is differen-
tiable over an open region # =&" and quadratic in x. Then

f(x) = a+ b'x+3x'Qx,

where b is an (nx 1) vector and the (n x n) Hessian matrix Q is taken to be
negative definite and non-singular. At an arbitrary point x,ex", Vf(x,)
= b+ Qx,. Then x, = @ (Vf(x,)— b). If f attains a strong local maximum

at x e, then Vf(x,) = 0 so that x, = —Q~'b. Upon subtracting x,,
from x, we obtain
X, —xo = — 0" Vi(x,). (D.1)

Here the difference x, —x, simply depicts the single step traversed to the

14 An iterative technique which does not rely upon first-order information and which performs
almost as well as the Fletcher-Powell method is that developed by Powell (1964), pp. 155-162.
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maximum of ffrom an arbitrary point x, at which the gradient of fis known.
Let us now assume that the inverse of the Hessian Q! is unknown so that
eq. (D.1) cannot be applied directly. What we would like to do is to piece
together information about the curvature of f which yields something like
eq. (D.1). But first let us consider

DEFINITION D.1. Given an (nx n) negative-definite matrix Q, the directions
s, i = 0,1, ...,n—1, are mutually Q-conjugate if they are non-null and

5;0s,=0, i#j, i,j=0,1,..,n—1 (D.2)

In addition, an important property of such directions is stated in

THEOREM D.1. Let Q be an (nxn) negative-definite matrix. If n non-null
directions s;, i = 0, 1, ..., n—1, are mutually Q-conjugate, then they are also
linearly independent.

Proof. Let us assume to the contrary that the s; are linearly dependent.
Then some particular s,, say the kth, is expressible as a linear combination
of the remaining s,’s, i.e.

n—1
S = Y. 0y
i=0
i#k
where at least one of the 6,’s, say the jth, is different from zero. Since the
s; are mutually Q-conjugate, s;Qs, = 0. Then

n—1
5;0s, = S}Q<i;0 eisi) = 0;5;Q0s; # 0.
itk
Since the expressions s;0Qs, = 0, s;Q0s, # 0 are contradictory, the s; must
be linearly independent. Q.E.D.

In this regard, the Fletcher—Powell method maximizes a quadratic function
of n variables in exactly » iterations by generating a sequence of n mutually
conjugate directions sq, s, ..., §,_;, the rationalization being that if we
search locally in the s,-direction and find a point x, which maximizes f,
and then search locally in the conjugate direction s, , ; and determine a point
X, +, which does the same, then the value of f at x,, ; cannot be increased
by searching again in the s,-direction. Hence we need search locally along
each of the directions s;, i = 0, 1, ..., n—1, only once.

Let us begin by considering the iteration scheme depicted by eq. (C.6),
namely

X, =x;_;+A_ Mx,_ )Vilx,_,), i=12...,n



148 LOCAL EXTREMA OF REAL-VALUED FUNCTIONS
or
X; =X+ A_185_4, i=12,..n,

where the directions s;,_; = M(x,_,)Vf(x;_,) satisfy eq. (D.2). From some
initial estimate of x, x,, we construct a direction s, = — HV{(x,), where
the (nx n) matrix H, is chosen to be symmetric and negative definite so
that movement locally along s, yields an increase in f. Hence the role of H,,
is simply to supply the current direction of motion. (Note that if —H is
the identity matrix, then our initial step is in the direction of steepest ascent.
In all other instances H, serves to deflect the direction of ascent to a path
different from that of the gradient.) Thus x, is determined as

X, = Xo+ ¢S50, so = —H,Vi(x,),
with the search parameter 1, chosen to maximize f(x,) along s, ie.
f(xg+ AoSo) = maxf(xy+As,).
p!
With H, negative definite,
d
azf(.to + ASO) - = - Vf(xo)'HOVf(x0)>0.
Hence we are assured that f actually increases locally in the direction of s,,.
In general, the ith iteration is determined as
B=%_0FrAh a8 1= LLaan (D.3)

where the directions s;,_, = —H;_,Vf(x;_,) are mutually Q conjugate,
H,_, is symmetric and negative definite, and, starting at x;_, 4;_ is chosen
so that

fx;_ 1+ 4;_18;—,) = max f(x;,_; +1s;_,). (D4)
2

As far as the quadratic convergence of eq. (D.3) to the maximum of f is
concerned, we shall demonstrate that if eq. (D.2) is satisfied, Vf(x,) vanishes
so that the maximum is attained at the nth step. From eq. (D.3) it is easily

shown that x, = x,+X7_} 4,5, or, for our purposes,

n—1 n—1
x,=x4+ Y Asi=x;+45+ Y As, j=0,1,..,n—1
i=j i=j+1
Upon substituting this latter expression into Vf(x) = b+ OQx we obtain
n—1 n—1
Vi(x,) = b+ Q(x;+4;5)+ Y A0s; = Vix; )+ Y AO0s,

i=j+1 i=j+1
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Then
n—1 n—1
siVi(x,) = siVi(x; )+ Y A4s0s, = Y As;0s,
i=7+1 i=7+1

since successive steps are mutually orthogonal, i.e. at the maximum indicated
by eq. (D.4),

df(x;_, +4s;_ )
di

If the directions s;, i = 0, [, ..., n—1, satisfy eq. (D.2), then s;Vf(x,) = 0.

Since the s;, i = 0, 1, ..., n—1, are linearly independent, Vf(x,) is orthogonal

tos;, i =0,1,...,n—1, only if Vf(x,)=0. Hence the maximum of f is attained

at the nth iteration when we search along a set of n mutually Q-conjugate
directions.

Since the iterative process described by eq. (D.3) is to converge to some-

thing which resembles eq. (D.1) in n steps, we must have H, = Q1. To see

=isiag V() =0, i =12 .. n

4 Bk

exactly how the sequence of deflection matrices H;, i = 1, ..., n, actually
converges to @1, let us consider the matrix difference equation
H, =H,_,+A,+B, i=1,..n, (D.5)

where it is stipulated that H, = Q~'. We first form the sum

Y H =Y H_,+ Y A+ ) B
i=1 i=1 i=1

i=1

or

so that
Q '=H,+ ) 4,+ ) B. (D.5.1)
i=1 i=1
As we shall now see, the role of eq. (D.5) is twofold. As our iterations progress
we desire: (1) to improve our initial estimate of Q~!, H,, by continually
updating the information regarding the curvature of f at x, obtained at

each successive step ; and (2) to cancel out the effects of a poor choice of H,,.
If we set

Z Bi - _Ho, (D6)
i=1
then

; 4= 07" (D.7)
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Thus the matrices 4,, i = 1, ..., n, serve to systematically generate O~ Lin
n steps according to eq. (D.7), whereas the B,, i = 1, ..., n, matrices tend to
gradually eliminate the influence of H, by virtue of eq. (D.6).

Our final step is to determine how the A4;, B; matrices are computed. We
indicated earlier that a second-order approximation of f at x, would be
achieved by piecing together information about the curvature of f obtained
from its gradients at two successive points. To this end let us form the gradient
difference vector

d, = Vi(x)=Vi(x,_,), i=1,...n (D.8)

From our initial expression for f(x) we obtain Vf(x) = b+ Qx. Coupling
this result with eq. (D.8) for x = x,, x;_, yields

d; = Q(x;—x;_,) = Qo,, (D.8.1)
where o, = 2;_;5;_, (eq. (D.3)). In addition, from egs. (D.7) and (D.8),
o, = Q0 Qe = Z Ad; = A, (D.9)

k=1

(here A,d; = 0, k # i. For a proof on this account, see Fletcher and Powell
(1963), p. 165). Then

— O';d‘- — 6;61 d
Gi=C%Ngid, | \aid, @

and thus, from eq. (D.9),

A; = (0,0))/(0:d)). (D.10)
We now obtain, from eqgs. (D.5), (D.8.1), and (D.9),
H.,Qo, = Hd, = H,_ d;+0,+ Bd. (D.11)

Since the directions s;,7 = 0, 1, ..., n—1, are linearly independent, successive
directions are related to H, by H;Qs; = ¢, i = 1, 2, ..., n (Fletcher and
Powell, 1963, p. 165). Hence, eq. (D.11) becomes

B . dH,_.d;) _ o H,_,ddH_,
Bid; = —Hid; = Hi—ld"(di’Hi_ldi)_ ( d:H;_,d, G

whence

H,_,ddH,_,

Bi - dt{Hi—ldi

(D.12)
The Fletcher-Powell method is now completely defined and successive
iterations may be carried out as follows :
(1) to maximize f, choose an initial point x, and a negative-definite
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matrix H, (for convenience, let Hy, = —1,);
(2) compute Vf(x,);
(3) calculate a direction in which to move s, = — H,V{(x,);

(4) to move along s,, compute a step length A, so that

f(xg+ A98) = maxf(xy+4sy);
A

(5)compute 6, = ASg, X; = Xo+6;
(6) compute Vf(x,), d, = Vi(x,)—Vf(x,);
(7) compute

;
g,0,

H.d,d\H,
o d,

d\H.d,

A, = , By=—

and thus
H, = H,+A4,+B;

(8) repeat steps (1)—(7), increasing each subscript by 1 at the beginning of
each round until |f(x;)—f(x;_ ;)| <#, where 1 is set at some predetermined
level.
If the minimum of f is to be determined, H, is chosen as positive definite
(H, = I, will do) and we minimize in step (4) rather than maximize.
When the Fletcher—Powell method is applied to a general function,
convergence to the desired extremum will not occur in exactly n steps as in
the pure quadratic case. In this instance the process should be thought of as
one involving the generation of conjugate directions for a quadratic approxi-
mation of f. As the iterations progress and the sequence of H, matrices yield
increasingly better estimates of the curvature of f at the extremum, the rate
of convergence accelerates as soon as the process gets reasonably close to a
second-order approximation.

Example D.1. Let the real-valued function
y=f(x) = b'x+3x'Qx

be defined for all xe&?2, where

5 1 0]
s u’ =10 —1.5J'
Maximize f using the Fletcher—-Powell technique given that x; = (I, 1),
H, = —1I, We first find

4 | 4
Vi(xy) = 6+ Qxy = {2_5} So = —H,Vi(xo) = L2.5:|.
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To determine 4, let us maximize

f(xo+As0) = b'(xo+ Asg)+3(xo+ A5,) O(xo+ As,)
7.75+22.25/,—12.6875)2.

From

df(xo + 15,)
d

we obtain 4, = 0.87 and thus

_ . _ [3480  no. — [4480
1= 40% T |y 1750 ¥1= Xoto1L = (g qqg)

To initiate the next iteration we compute

= 2225-25375A=0

0.5200
Wllee) = F 0% ~ [—0.7625}’
—3.4800
From
4. = 0101 _ [—0.6305 —0.3941J
' 7 eid, — [-03941 —0.2463)
g - _ HodidiHy _ 05322 0.4990
Y7 T Td{Hyd; T~ 04990 0.4678
we obtain

—1.0983 0.1049
H, = Ho+A4,+B, :[ 0.1049—0.7785:l’

0.6510
s, = —H,Vi(x,) = [._0,6481 '

We next compute A, by maximizing

flx, +4sy) = b'(x;+As)+3(x, + 1s,) Ox, + 1s,)
—0.913+1.00254—1.0538)2,

Il

To this end we have

Mg’@l — 1.0025—2.10764 = 0

or A; = 048 and thus

_ . _ ] 03125
02 = hisi = [—0.3111}’

)= xita, = [4.792

5 ~
2.8639

X e
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The next example is designed to provide the reader with a convenient
numerical procedure for determining the value of the search parameter 4
in situations where the function to be maximized or minimized is not quad-
ratic in x.

Example D.2. Minimize the real-valued function
y = f(x) = xIx,+x3+x,x,, xe6?

using the Fletcher—Powell method. Upon choosing x, = (1, 1), Hy = I,
we first obtain

Vi(xo) = m 5o = — H,Vi(xy) = [: ﬂ
Our next step is to minimize f(x,+ As,). Since f is not quadratic in x, let us
approximate f(x, + 1s,) by a second-order polynomial in A. Setting
f(xo+7s0) = g(4) = a+bl+ci?,
we have, for A = 0,

g(0) = a = f(x,) = 3.

Additionally,
dgl  _, (20 Vdx_gpyg o
dllias b—<ax /‘.=0> ke Vi(xo)'so = —25.

To obtain ¢, let us arbitrarily set A = 1. Then
g(l) = f(x,+s,) =3 =3-25+¢ or ¢ =25
Hence
fxg+4s,) = 3—251+2522,

df(xg+4se) _ _
—d - 254504 =0

and thus 4, = 0.5. Then
01 = Aoso = {_13:\’ xl = x0+0'1 = {—3?}

To start the next round of calculations we first determine

0 -3
Vi(x,) = {_225}, d, = Vi(x,)— Vi(xy) = [_6.2 ]



154 LOCAL EXTREMA OF REAL-VALUED FUNCTIONS

Then
4. = o,0; |0.1324 0.1765
' 7 67d, — |0.1765 0.2353)"
B. — _Hyd,diH, |—0.2043 —0.3901
L= diH,d, ~— | —-03901 —0.8127
and thus

—02136 04226
—0.4806}

Hy = Ho+ A, +B, = [ 0.9283 —0.2136i|’

s BN i D
. VD =17 09506

We will now minimize f(x,+ Zs,). Again a quadratic approximation to
f(x,+4s,) = g(4)is in order. For 4 = 0,

g(0) = a = f(x,) = 1.25.

Furthermore,

Finally, for 1 = 1,
g(l) = f(x,+s,) = 00033 = 1.25-2.13894+¢ or ¢ = 0.8922.

Then
fx,+1s;) = 1.25—2.13891+0.892242,
ditxi+45) _ 513894178442 = 0
dz
and thus 4, = 1.1987. Hence
_ . — |-0s761] = x 4o, | 10761
02= A1 = 11395’ 2T 8T =1 0 1308)

The above process is repeated until the successive iterations converge
to x,.

6.14.2. The Fletcher—Reeves (conjugate gradient) method

We noted in the previous section that to undertake the various rounds of
the Fletcher—Powell technique an (n x n) symmetric negative-definite matrix
H; had to be computed and updated at the next iteration to insure that
H, = Q~'. From the viewpoint of economizing on time and effort, a
method which does not store any such information but simply locates the
maximum may at times be preferred. Such a process is that provided by
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Fletcher and Reeves. If the function to be maximized is quadratic in x,
their method will also locate the extremum in n steps by generating a
sequence of mutually conjugate directions.

Thus, in what follows we shall attempt to find the maximum of the
differentiable real-valued function

y = f(x) = a+b'x+ix'Qx, xeb",
over an open region " =¢&". Given the iteration scheme depicted by
Xy = Ky bidye (Spagy B = D2, v, 1y

let us start from an arbitrary estimate of the critical point x,,, x,, and search
initially in the direction of steepest ascent. Then x; is obtained as

Xy = Xo+ 405, So = Vi(xg)
where 1, is determined by maximizing f(x,) along sy, i.€.

f(x0+/:0s0) = m?lX f(xO+/:SO).

At the implied maximum
soVE(xy) = so(b+ Q(xg+4ps0)) =0
or

o _sbb+0xo) _ _ 56 Vixo)
Y0 — 7 - ’

so @ So 50950
To execute succeeding iterations the search directions s;, i>0, are chosen
to equal the gradient at x;, i>0, plus an appropriate linear combination of

the previous directions. Hence the directions s;, i =0, 1, ..., n—1, will
satisfy eq. (D.2) if s, = Vf(x,) and
s; = VEx)+ B8 i=12,..,n—1,

where, by the orthogonality of successive gradients,'?

8 _ Vf(x;)' Vi(x;)
T V() V(e -y)

1= 1, 2en=1.

In general, the various rounds of the Fletcher—Reeves method may be
carried out as follows:

(1) to maximize f, choose an arbitrary point x;

(2) compute Vf(x,) ;

15 A detailed development of these last two expressions is provided by Beckman (1964), pp.
62-72, and Zangwill (1969), pp. 139-144.
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(3) choose as the initial direction s, = Vf(x,);
(4) to move along s,, compute the step length A, so that

f(xq+ Ag8o) = max f(x,+ As,),
A

that is,
_ So Vi(xo) .
s00sy
(5) compute x; = x5+, VI(xp);
(6)fori =1,2,...,n—1, choose /; so that

2.0::

f(x;+4;8;) = max f(x; +1s;),
A

that is,

__ 85iVi(x)
A= 5; Os; ’

where
s; = Vix)+Bi- 15— 1,

(7) compute

g = Vi) Vil
S Vi(x;-1) Vi(x;- 1)’

X=X+t A_y8 4 i=23,..,n;

(8) after the first iteration is completed, repeat steps (6) and (7) until

Vf(x;) = 0.
To minimize f, choose s, = —Vf(x,), s; = —Vf(x;)+B;_s;_, and mini-
mize in steps (4) and (6) rather than maximize.!®

If the function to be maximized or minimized is not quadratic in x, the
desired extremum will not be located in exactly n steps. In this instance
Fletcher and Reeves suggest restarting the process in the direction of steepest
ascent or descent after every n+1 iterations. As an exercise the reader is
asked to rework example D.2 using the algorithm developed in this section.

16 For an evaluation of the relative performance of the Fletcher—-Powell, Fletcher-Reeves
techniques, among others, see Box (1966), pp. 67-77; Pearson (1969), pp. 171-178; Fiacco
and McCormick (1968), pp. 162-165.

Befejezett.



