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Preface

Without knowing that both of us were there, the authors of this volume
were random-walking on the streets of London in 1966 when, due to
a theorem of Podlya, they met. Obviously this occasion called for a beer
and a chat about mathematics. The beer turned out to be good enough
to suggest that we should work together, and the idea of writing this book
was born then. We are deeply indebted to the inkeeper for his hospitality
on this occasion.

At that time we did not really know each other, though we had a common
root in that both of us were students of Alfréd Rényi. The first named
author actually studied mathematics at McGill University in Montreal
and never took any courses from him. It was the papers and book of
Rényi at that time, however, which influenced him most, and moulded
his interest in doing research in probability-statistics. This also led to
meeting him several times personally, thus directly benefiting from his most
stimulating and unique way of thinking about mathematics. The second
named author was a student of Rényi, indeed taking his courses in Budapest,
and learning the secrets of doing research in probability directly from him.
Rényi’s great enthusiasm for the beauty of doing mathematics has inspired
him to also try his hands at it. Both of us are deeply convinced that, without
his lasting influence and help while we were young, we could have never
written this book.

Our real collaboration began in 1972. During these past years we were
fortunate enough to be able to visit each other several times, working in
Ottawa where M. Csorgd is located and in Budapest where P. Révész is.
This intensive collaboration would have been impossible without the under-
standing and support of our respective home institutions, the Department
of Mathematics at Carleton University and the Mathematical Institute of
the Hungarian Academy of Sciences.



Introduction

Let Xi, X,, ... beiid.rv. with EX;=0, EX?=1 and let F be their
distribution function. Let Y;, Y,, ... be ii.d. normal r.v. with mean zero

and variance one (Y;€47(0, 1)) and put S,,=2"X,-, T,,=Zn' Y; with
i=1 i=1

So=T,=0. The classical central limit theorem states

0.1) P{n‘l/zS,,§y}—>¢(y)=7%_;_Ze““’/2du
for any real y as n—eo. Since

P BT = yy= &(y). (p=1,2,...),
the central limit theorem can also be stated as follows:
0.2) P{n12S, = y}—P{n~T, = y} -0,

which, roughly speaking, means that the limiting behaviour of S, and
T, is the same. In other words, as time goes on, S, forgets about the
distribution function F where it has come from. However, it is also true
that observing the sequence S,, S,, ... (or, only S,, S,.1,... from any
fixed n on), one can determine F with probability one via the Glivenko-
Cantelli theorem. ’

Thus one can say that each individual S, forgets about F but the
complete sequence {S,;n=1,2...} (or a tail of it) remembers F. One
of the main goals of this book is to investigate to what extent can S, re-
member F and to what extent can it forget about it.

The first questions of this type were formulated by Erd3s and Kac (1946)
(cf. also Kac (1946)). They wanted to evaluate the limit distributions

@ Gi(y) = lim P(n~ max S, = y),

(ii) G(y) = lim P(n™" max |S,| = y),
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butional properties of {S,(z); 0=¢=1} should coincide! with those of
{W(t); 0=t=1} as n—oco. One possible way of saying this precisely is:

Theorem 0.1. (Donsker 1951). We have
0.5) h(S, ()2~ h(W (1))
Jfor every continuous functional h: C(0,1)—RZ

We note here that (0.4) only suggests that (0.5) should also be true and
a precise proof of it was not at all easy to produce. Indeed, if {X,(#)}:,
is a sequence of stochastic processes taking values from a function space
M endowed with a metric g, and

0.6) (X1, X, (1) ..., X, (1)) —= (Xo(tD), Xo(2o), -..» Xo(1)

for any fixed sequence #,<iZ,<...<f;, then the statement that

0.7) h(X, (1)) =2 h(X,(2))

should hold for every continuous functional A: MR, is not necessarily
true. A complete methodology for proving (0.7), assuming that (0.6) is
true, was worked out by Prohorov (1956) and Skorohod (1956).

In fact they proved a stronger statement to the effect that, under some
conditions, the sequence of probability measures generated by {X,(7)}
converges (in the so-called weak topology) to the measure generated by
Xy(?). An excellent summary and further development of these ideas
and techniques can be found in the books of Billingsley (1968) and Partha-
sarathy (1967).

Replacing the functional % in Theorem 0.1 by

hy(f) = ossltlglf #), hy(f)= a8 £,

hs(f) = [ A @0)dt, h(H)= [If@)ldL,

and taking into account that these functionals are continuous with respect
to the topology of C(0, 1), Theorem 0.1, in particular, also implies that

1 In this connection we should also mention that Kolmogorov (1931, 1933a) and
Khinchine (1933) investigated the problem of evaluating the asymptotic probability of the
event f,(£)<S,(t)=f,(¢r) for two functions f,(t)<0<f,(¢), and proved that under
some conditions on these functions the latter probability is equal to P{ﬂ(t)< W)=
=f, (t)}. Their approach is based on the heat equation.
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G,(x) (i=1,2,3,4) of (i)~(iv) do not depend on F. That is to say the
invariance principle of Erdés and Kac follows from Donsker’s theorem
and, at the same time, the latter can also be applied for any other con-
tinuous functional.

After the development of the theory of weak convergence of probability
measures on metric spaces, a completely new form of the invariance principle
was introduced by Strassen (1964). He proposed to construct a Wiener
process W(t) on the very same probability space where the r.v. {x}
live in such a way that |S,— W (n)| would be small in the sense that the
relation
|S,,—W(n)| a.s.

g(n)

should hold for a suitably increasing function g. In fact the possibility
of such a construction depends not only on the distribution F but also
on the structure of the basic space. Hence the question in a more adequate
form is the following:

Given a distribution function F with f xdF=0, f x2dF=1, can we
construct a probability space {Q, &, P}, a sequence {X;} of iid.r.wv.
with P(X;=y)=F(y) living on Q, and a Wiener process W(t) also
defined on ©, such that (0.8) should hold?

Answering this question Strassen (1964) proved the following

0.8) 0

Theorem 0.2.

(09) ISn _ W(n)l a.s.

Vnloglogn

That is to say for any F with f xdF=0, [x*dF=1, one can construct
a probability space where the i.i.d. sequence {X;} and a Wiener process
W(t) can be realized such that (0.9) holds.

In order to get a form of Theorem 0.2 resembling that of Theorem 0.1,
we give the following reformulation of the former.

0.

Theorem 0.2*.
172
(09*) sup lS"(t) n W(nt)l a.s. 0.
0=t=1 Vlog log n

Comparing Theorems 0.1 and 0.2 (or 0.2%), a great advantage of the
latter is that is speaks about almost sure convergence instead of convergence
in distribution.
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Strassen used his strong invariance principle (Theorem 0.2) to prove
the law of iterated logarithm for ii.d.r.v. with finite second moment (the
Hartman-Wintner theorem (1941)) via first proving such a theorem for the

n=12W (nt)
—;0=¢=1
Y2loglogn }
of stochastic processes, Strassen also obtained a deeper insight into the
—————_S*"(t) ;Oétél} (cf. Theorem 1.3.2).
Y2loglogn

In this spirit then Theorem 0.2 is like Theorem 0.1, the latter being
applicable to prove weak convergence theorems for i.i.d.r.v. using distri-
butional properties of the Wiener process, while the former is useful for
proving strong theorems via similar properties of the Wiener process.

Theorem 0.2, however, does not imply Theorem 0.1, and this is because
the rate of convergence in (0.9) is not strong enough. Should one be able
to prove (0.8) with g(n)=o0(n/2), then clearly we could also get (0.5) as
a consequence of such a strong invariance principle. Chapter 2 of this
book is mainly devoted to the question of the best possible rate in (0.8).

The precise connection between weak and strong invariance principles
was established by Strassen (1965a) (cf. also Dudley (1968) and Wichura
(1970)) via the so-called Prohorov distance of probability measures. Infact
these results state a kind of equivalence between these two forms of in-
variance.

Wiener process. In fact studying the sequence {

properties of the sequence {

Our book is mainly devoted to the overall question of strong invariance
theorems.

Our reason for concentrating on strong invariance methodology (instead
of the weak one) can, perhaps, be justified by the fact that this approach
has developed so much in recent years that it was capable of producing
a number of results in probability and statistics which, in spite of the above
mentioned equivalence of the two principles, would have been quite difficult
to produce by the usual weak convergence methodology.

When talking about the origin of the invariance principle, another,
independent source should be also mentioned besides the 1946 paper of
Erdds and Kac. Itis the paper of Doob (1949), entitled “Heuristic approach
to the Kolmogorov-Smirnov theorems”. The idea of this paper is the
following: Let Uy, U,,... be a sequence of i.id.r.v., coming from the
uniform U(0, 1) law. Let

E)=n"" 2 Tox(Ud
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be the empirical distribution function, and let
OC"(X) = nI/Z(En (x)_x)

be the empirical process. Observe that the limit of the joint distribution
of  a,(%1), ay(%2)s ooor (%) (O=x3<xp<...<x,=1; k=1,2,...) is the
corresponding finite dimensional distribution of a Brownian bridge; that
is to say

0.10)  {or, (x0), 0 (Xa),s ooy 0, () }—2— {B(x), B(xo), ..., B(x)}

as n—oo, where B(x) is a Brownian bridge. This then suggests that the
limit properties of the empirical process o,(x) should agree with the
corresponding properties of a Brownian bridge. For example, the limit
distribution of sup o,(x) (resp. sup |ot(x)]) should agree with the distri-
bution of sup B(x) (resp. sup B|(x)|). Since the direct evaluation of the
limit distribution of sup a,(x) (resp. sup |ot,(x)[) is rather complicated,
while the evaluation of the distribution of sup B(x) (resp. sup |B(x)))
is easier, the above sketched approach is obviously useful. Indeed, besides
posing the above invariance argument, Doob (1949) proceeded to evaluate
the distribution of these latter functionals of B(x), leaving the problem
of justification of his approach open. Donsker (1952) was the first one again
who attacked this latter problem and succeeded in justifying and extending
Doob’s heuristic approach.

Comparing this problem to that of Theorem 0.1, we can see that a
difficulty is coming from the fact that the sample functions of o,(x) do not
belong to C(0, 1). This difficulty was again solved by Prohorov (1956)
and Skorohod (1956), while working on the so-called D(0, 1) function
space. Naturally, an analogue of Theorem 0.1 is also true for a continuous
approximation of «,(x) on C(0, 1).

In the light of Strassen’s strong invariance principle, it was only natural
to look for analogous approximations also for the empirical process o,(x).
This task turned out to be quite difficult and it took a bit of time to get
results. The first one of them is due to Brillinger (1969), and reads as
follows:

Theorem 0.3. Given independent U(0,1) rw. Uy, U,, ..., there exists
a probability space with sequences of Brownian bridges {B,(x); 0=x=1}
and empirical processes {3,(x); 0=x=1} such that

9

©0.11) {&,(x); 0=x=1}—={o,(x); 0=x=1} foreach n=12, ..,
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and
0.12) sup |@&,(x)—B,(x)| = O(n=**(log n)**(log log n)*/*).
0=x=1

This theorem immediately implies the above mentioned analogue of
Theorem 0.1. Namely, in terms of weak convergence, we have

(0.13) a,(+) 2> B(-).

On the other hand, in spite of the indicated a.s. convergence in (0.12),
Theorem 0.3 is not really a strong approximation theorem like Theorem 0.2
is. The reason for this is that in (0.12) we only have an approximation
for each n, and only for a version &,(x) of a,(x). More precisely then,
while Theorem 0.3 is a good first step in the right direction, it does not
succeed in bringing together the stochastic processes {o,(x); 0=x=1,
n=1,2,...) and {B,(x); 0=x=1, n=1,2,...}. Consequently, no strong
law type behaviour of the process o,(x), say like the law of iterated loga-
rithm, can be deduced from (0.12).

Kiefer (1969b) was the first one to call attention to the desirability of
viewing the empirical process o,(x) as a two parameter process and that
a strong approximation theorem for «,(x) should be given in terms of an
appropriate two dimensional Gaussian process. He also succeeded in giving
a first solution to this problem (Kiefer 1972; cf. Theorem 4.3.1). Preceding
this work, Miiller (1970) proved a corresponding two dimensional weak
convergence of o,(x), using Rényi’s (1953) exponential representation of
the empirical process.

In the present book we intend to summarize and elaborate on a number
of recent strong invariance type results for partial sums and empirical
processes of i.i.d.r.v., putting an emphasis on the applicability of strong
approximation methodology to a variety of problems in probability and
statistics. This is why, in the title, we use the expression ‘“‘strong approxi-
mations” instead of “‘strong invariance principles”.

In Chapter 1 we study the Wiener process together with some further
Gaussian processes derived from it. In fact, in this Chapter we have intended
to collect mostly those theorems for Gaussian processes which can be
extended to partial sums and empirical processes of i.i.d.r.v. via strong
approximation methods.

Chapter 2 is addressed to the problem of best possible strong approxima-
tions of partial sums of i.i.d.r.v. by a Wiener process, and it contains those
theorems which tell us a complete story of this problem.

Y A N
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The content of Chapter 3 can be summarized in one sentence: Take
“almost™ any theorem of Chapter 1 concerning the one-time parameter
Wiener process, then it can be extended to partial sums of i.i.d.r.v. via the
results of Chapter 2. In most of the cases when the approximation methods
do not work we can also conclude that the corresponding results cannot be
extended at all. This Chapter does not intend to give a full systematic
treatment of the asymptotic behaviour of partial sum processes and we
concentrate only on those properties which can be deduced from invariance
principles. For a detailed discussion of sums of random variables we refer
to Petrov (1975) and Stout (1974).

Chapter 4 contains strong approximation theorems (in terms of suitable
Gaussian processes) for the empirical and quantile processes based on
iid.rv.

The role of Chapter 5 in the theory of empirical and quantile processes
is similar to that of Chapter 3 in the theory of partial sums of ii.d.r.v.
Namely, in this Chapter we show that by applying the results of Chapter 4,
the theorems of Chapter 1 concerning Brownian bridges and the so-called
Kiefer process are also valid for empirical and quantile processes. This
phenomenon of inheriting properties from appropriate Gaussian processes
is not so complete here as in the case of partial sums of i.i.d.r.v. and, to
some extent, we also touch upon the problem of similar and non-similar
behaviour beyond invariance (cf. Remark 5.1.1). For a recent and more
detailed discussion of this topic we refer to the survey paper of Gaenssler
and Stute (1979).

In Chapter 6 we show that suitably defined sequences of empirical
density, regression and characteristic functions can be approximated by
appropriate Gaussian processes. Here it will be seen that some results
on Gaussian processes can be extended also to these by strong approxima-
tion methods.

The aim of Chapter 7 is to demonstrate that strong approximation
methodology can also be applied to study weak and strong convergence
properties of random size partial sum and empirical processes.

A common property of Chapters 3, 5, 6 and 7 is that their respective
topics are treated only so far as one can see them via strong approximation
methods, and we did not aim at completeness at all in treating them.

The subject of this book is restricted to i.i.d.r.v. when the time and state
parameters belong to the real line. There is an exception in Chapter 1,
when we also study certain properties of two-time parameter Wiener and
Kiefer processes. Our reason for this is due to the fact that certain properties
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of the empirical process o,(x) can only be described and handled via
viewing it as a two-time parameter process in x and .

We intend to study the problems of strong approximation of multi-time
parameter partial sum and empirical processes by appropriate multi-time
parameter Gaussian processes in the second volume of this book.

The case when the state space is also a higher dimensional Euclidean
space (or a Banach space) has been investigated by several authors (cf. e.g.
J. Kuelbs 1973, J. Hoffman-Jergensen—G. Pisier 1976, Garling 1976) and
it should be the subject of a third volume. The subject of a fourth volume
should be the case of non-independent and/or non-identically distributed
r.v. (for a preliminary version we refer to W. Philipp and W. Stout (1975),
an excellent survey of the present situation of this topic). However, the
authors have realized that the lifetime of a human being is not only a
one-dimensional but also a strictly bounded r.v. Hence, they do not
intend to write the mentioned third and fourth volumes, though they
would be glad to live long enough to read these by someone else.



